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Abstract

In this paper, the problem of random vibration of ge-
ometrically nonlinear MDOF structures is considered.
The solutions obtained by application of two di�erent
versions of a stochastic linearization method are com-
pared with exact (F-P-K) solutions.
The formulation of a relatively new version of the

stochastic linearization method (energy-based version)
is generalized to the MDOF system case. Also, a new
method for determination of nonlinear sti�ness coef-
�cients for MDOF structures is demonstrated. This
method in combination with the equivalent lineariza-
tion technique is implemented in a new computer pro-
gram.
Results in terms of root-mean-square (RMS) dis-

placements obtained by using the new program and an
existing in-house code are compared for two examples
of beam-like structures.

Introduction

Resurgent interest in high speed �ght vehicles and
the daily operation of the aging commercial and mil-
itary aircraft 
eets necessitate the further develop-
ment of sonic fatigue technology to understand the fa-
tigue mechanisms and to estimate the service life of
aerospace structures subjected to intense acoustic and
thermal loads. E�orts to extend the performance and

ight envelope of high speed aerospace vehicles have
resulted in structures which may behave in a geomet-
rically nonlinear fashion to the imposed loads. Such
behavior can have a signi�cant e�ect on fatigue life.
Further improvements in vehicle performance and sys-
tem design are hampered by the limited understand-
ing of the physical nature of geometrically nonlinear
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structural response. Conventional (linear) prediction
techniques can lead to grossly conservative designs and
provide little understanding of the nonlinear behavior.
A large body of work exists on the prediction of ge-
ometrically nonlinear dynamic response of structures.
All methods currently in use are typically limited by
their range of applicability or excessive computational
expense.
Methods currently in use to predict geometrically

nonlinear dynamic structural response include per-
turbation, Fokker-Plank-Kolmogorov (F-P-K), Monte
Carlo simulation and stochastic linearization tech-
niques. Perturbation techniques are limited to weak ge-
ometric nonlinearities. The F-P-K approach1;2 yields
exact solutions, but can only be applied to simple
mechanical systems. Monte Carlo simulation is the
most general method, but computational expense lim-
its its applicability to rather simple structures. Finally,
stochastic linearization methods (e.g. equivalent lin-
earization, see2�6) have seen the most broad applica-
tion for prediction of geometrically nonlinear dynamic
response because of their ability to accurately capture
the response statistics over a wide range of response
levels while maintaining a relatively light computa-
tional burden.
Implementations of stochastic linearization have

been limited to special purpose computer codes un-
til recently when the method of equivalent lineariza-
tion was introduced into MSC/NASTRAN as a Direct
Matrix Abstraction Program (DMAP) Alter7. In this
study an alternative approach to the solution of non-
linear vibration problems is developed and an inde-
pendent in-house code based on this approach is im-
plemented.

Equivalent Linearization Techniques

Two versions of the equivalent linearization tech-
nique are considered. One is based on minimization of
the error in the force-vector, and the other minimizes
the error in potential energy.

Force Error Minimization Version

Consider a MDOF, viscously damped linear system.
The equations of motion governing such a system can
be written in the form

M �X +C _X +KX = F
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where M is the mass matrix, C is the damping ma-
trix, K is the sti�ness matrix, X is the displacement
response vector and F is the force excitation vector.
For geometrically nonlinear problems of deforma-

tion, e.g. large de
ection 
exural vibration of thin
plate structures, the governing equation(s) of motion
will include a nonlinear force term �(X), i.e.

M �X + C _X +KX + �(X) = F (1)

where the vector function �(X) generally includes 2nd
and 3rd order terms in X. There exist mathematical
di�culties in the derivation of a general solution to
equation (1) for the case of random excitation. An
approximate solution can be achieved by formation of
an equivalent linear system:

M �X + C _X + (K +Ke)X = F (2)

where Ke is the equivalent linear sti�ness matrix.
The method of equivalent linearization seeks to mini-

mize the di�erence between the nonlinear force and the
product of the equivalent linear sti�ness and displace-
ment response vector. The equivalent linear sti�ness
satisfying this requirement can be determined from the
following condition:

error = E
�
(�(X) �KeX)T (�(X) �KeX)

�
! min

where E[:::] represents the expectation operator. The
latter equation will be satis�ed if

@(error)

@Keij

= 0 i; j = 1; 2; :::;N

In this paper, consideration is limited to the case of
Gaussian, zero-mean excitation and response to sim-
plify the solution. Omitting intermediate derivations,
the �nal form for the equivalent linear sti�ness ma-
trix becomes (see for example Roberts et al.3, Atalik
et al.4):

Ke = E[
@�

@X
] (3)

Potential Energy Error Minimization Version

Elishako� et al.5;6 proposed another stochastic lin-
earization approach, based on potential energy error
minimization and numerical results were demonstrated
for the case of SDOF systems. In this paper, that ap-
proach is generalized for the case of MDOF systems.
One can begin with an expression for the error in po-
tential energy �

� = E[(U (X)�
1

2
XTKeX)2]

where U (X) is the potential energy of the original (non-
linear system) and Ke is the sti�ness matrix of the
equivalent linear system.

A condition of minimized error �! min requires the
following

E[
@

@Keij

((U (X) �
1

2
XTKeX)2)] = 0 i; j = 1; N

where Keij are elements of matrix Ke. Omiting inter-
mediate derivations, one obtains the following system
of N2 linear equations with respect to unknown ele-
ments of matrix Ke:

NX
i;j=1

KeijE[xixjxkxl] = 2E[xkxlU (X)] (4)

where k; l = 1; N .
For example, equation (4) would have the following

form for a two-degree-of-freedom system

2
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E[x1x2U (X)]
E[x1x2U (X)]
E[x22U (X)]

3
775 (5)

Note that the 2nd and 3rd rows are identical, thus an
additional equation is required to solve this system.
The additional equation(s) can be provided by the im-
position of a condition of symmetry of the matrix Ke:

Keij = Keji (6)

The matrix of the system in equation (5) involves
4th order moments of displacements and the right-hand
side (assuming that the potential energy is a function
of the 2nd, 3rd and 4th order terms) involves moments
of 4th, 5th and 6th order. Using the Gaussian dis-
tributed, zero-mean response assumption means that
the odd order moments are zero and the higher even
order statistical moments can be expressed in terms of
the 2nd order moments, e.g.,

E[xixjxkxl] = E[xixj ]E[xkxl] + E[xixk]E[xjxl]+

E[xixl]E[xjxk]

Therefore the matrix and right-hand side of (5) can
be determined solely by the response covariance ma-
trix. So the equivalent sti�ness matrix at each iteration
is determined through the use of response covariance
terms from the previous iteration by solving equations
(5).
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Iterative scheme of equivalent linearization

Having de�ned the equivalent linear sti�ness matrix
through either the force error or potential energy er-
ror minimization techniques, one can proceed with the
solution of the equivalent linear system. Assuming sta-
tionary excitation, a stationary response is sought pre-
cluding the need for initial conditions. As the equiva-
lent sti�ness matrix Ke is a function of the unknown
displacement response vector, the solution to the sys-
tem of equations of motion takes an iterative form, i.e.

M �Xn+1 + C _Xn+1 + (K +Ken)Xn+1 = F (7)

where new displacement response estimates are calcu-
lated from a system based upon the previous estimate
and iterations are continued until a convergence crite-
rion is satis�ed.
The solution to the equivalent system in equation

(7) for each iteration can be obtained in the frequency
domain using the well known relation between the spec-
tral density matrices for a linear system:

Sx(!)n+1 = Hn(!)Sf (!)H
T

n (!)

where the over-bar indicates the complex-conjugate, Sf
is the spectral density matrix of the random excitation
and the frequency response matrix is given by

Hn(!) = [�!2M + i!C +K +Ken]
�1

The zero-time-lag covariance matrix components
participating in the matrix Ken are calculated from
the response spectral density matrix using the Wiener-
Khinchine formula

E[xixj ]n =

Z 1

�1

[Sxij(!)]nd!

An implementation of the equivalent linearization
approach outlined above was recently implemented in
a special purpose in-house code to provide a tool for
expedient study.

Comparison with F-P-K Solutions

The two equivalent linearization methods presented
above will be compared with F-P-K solutions for SDOF
and 2DOF systems.

SDOF system

Consider a SDOF system (Du�ng oscillator):

�q(t) + 2�!0 _q(t) + !20q(t) + �q3(t) = f(t) (8)

where q is a nondimensional coordinate/displacement.
The addition to the potential energy originated from
the nonlinear term is characterized by

U (q) =
1

4
�q4 (9)

For this case, solution of the system (5) (energy-based
technique) provides the following equivalent sti�ness

ke = 2:5�E[q2]

and equation (3) (force-base technique) yields

ke = 3�E[q2]

Comparison of response variances for this system
versus the nonlinearity parameter �

!2

0

is illustrated

in Figure 1. A white noise excitation was taken as
the input spectral density function, i.e. Sf (!) was
constant and equal to 1:0e + 05: The results corre-
spond to an oscillator with a natural frequency of
57.4 Hz (!20=1.301e+05 s

�2) and damping coe�cient
� = 0:005. The three curves in Figure 1 correspond
to the F-P-K solution, force error minimization and
energy error minimization versions.
Comparison of response variances for this oscillator

versus the spectral density function value Sf is illus-
trated in Figure 2, where the nonlinearity parameter
�

!2

0

was �xed and equal to 10. One can see that the

energy error minimization version results are closest to
the exact (F-P-K) solution results.

2DOF system

As a next example, consider the model of a 2DOF
system in Figure 3. The equations of motion for this
model have the form

m1�q1+c1 _q1+k1q1+k2(q1�q2)+�1q
3
1+�2(q1�q2)

3 = f1(t)

m2�q2+ c2 _q2 + k2(q2 � q1) + �2(q2 � q1)
3 = f2(t) (10)

The potential energy contribution from the nonlinear
part is

U (q1; q2) =
1

4
�1q

4
1 +

1

4
�2(q2 � q1)

4

White noise was taken again as the input exci-
tation with the spectral density matrix components:
Sf11(!) = Sf22(!) = 1, and Sf12(!) = Sf21(!) = 0.
The rest of the parameters of this model were as fol-
lows m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0:1 and
�1 = �2 = �. A comparison of response variances ver-
sus the nonlinearity parameter � for this 2DOF system
(10) is shown in Figure 4. Again the energy-based ver-
sion results are closer to the exact F-P-K solution, than
the force-based version results.
Note that in the case of general MDOF nonlinear

systems, the determination of the expression for the
potential energy can be complicated. This problem
will be addressed in the section below.
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Determination of Nonlinear Sti�ness

Coe�cients

So far, examples were considered where the nonlin-
ear sti�ness coe�cients were prescribed. In a general
case of a MDOF system, these coe�cients have to be
determined. One method of determining the nonlin-
ear sti�ness coe�cients is through the use of a �nite
element approach. Existing �nite element commercial
programs are unable to provide these nonlinear sti�-
ness coe�cients directly. It is desirable to achieve a so-
lution within a commercial �nite element code to take
advantage of the comprehensive element library, etc.
necessary for modeling complex structures. This sec-
tion describes a method of determining the nonlinear
sti�ness coe�cients through the use of the nonlinear
static solution capability that exists in many commer-
cial �nite element codes.
For MDOF structures, it is expedient to seek a so-

lution in modal coordinate space

X = �q (11)

where � is generally a subset (L � N ) of the linear
eigenvectors (normal modes). Such a representation
allows the size of the problem to be signi�cantly re-
duced without a noticeable loss of accuracy in many
cases.
One can obtain the following set of di�erential equa-

tions in terms of modal coordinates qi (i = 1; L):

�qi(t) +
LX
j=1

cij _qj(t) + kiqi(t) + 
i(q1; q2; :::; qL) = fi(t)

(12)
where the nonlinear terms will be represented in the
following form


i(q1; q2; :::; qL) =
LX

j;k=j

aijkqjqk +
LX

j;k=j;l=k

bijklqjqkql

(13)
where the �rst index j takes values 1,2,...,L, the index
k takes values from j (the current �rst index value)
and up j + 1,j + 2 ... to L and the third index l takes
values from k (the current second index value) and up
k + 1, k + 2 to L.
The analytical form of the nonlinear terms facilitates

the solution of equations (12) when the forces and dis-
placements are random functions of time.
A procedure for determination of the coe�cients aijk

and bijkl is described brie
y. This procedure requires
the application of a �nite element program with a non-
linear static solution capability. In this study, the
MSC/PATRAN and MSC/NASTRAN programs9;10

are utilized.
The suggested technique is based on the restoration

of nodal applied forces from enforced nodal displace-
ments prescribed to the whole structure in a static so-
lution (linear and nonlinear). Namely, by prescribing

the physical nodal displacements (vector Xc) to the
structure, one can restore the nodal forces FT and the
corresponding nonlinear contribution Fc:

Fc = �(Xc) = FT �KXc (14)

The displacements Xc can be prescribed by creating a
displacement constraint set for the model in PATRAN,
then the nodal applied forces FT will arise as single-
point-constraint forces in a NASTRAN nonlinear static
solution.
To illustrate the technique, one can begin with the

prescription of displacements for the whole structure
in the following form

Xc = �1q1 (15)

The nodal force vectors FT (nonlinear static solution)
and KXc (linear static solution) are provided by NAS-
TRAN. The nonlinear term Fc can then be evalu-
ated by equation (14). The vector of modal forces
~Fc = �TFc is calculated and it is represented as

~Fc = �TFc = �T�(Xc) = �T�(�1q1) =

[ai11]q1q1 + [bi111]q1q1q1 (16)

where the sought sti�ness coe�cients [ai11], [b
i
111] are

column-vectors L � 1 (i = 1; L). Note that all other
nonlinear terms in (16) do not appear since qj = 0 for
j 6= 1.
Prescribing a displacement �eld with opposite sign

Xc = ��1q1 results in a modal force vector (denoted
by ~F�c):

~F�c = �TF�c = �T�(Xc) =

�T�(��1q1) = [ai11]q1q1 � [bi111]q1q1q1 (17)

where the quadratic (even) term will be the same as in
(16) and the cubic (odd) term takes on a sign change.
Note that in the system of equations (16) and (17),

the value of q1 is given. The coe�cients [ai11] , [b
i
111]

(i = 1; L) can be determined from this system of 2�L
linear equations. In an analogous manner, i.e. pre-
scribing Xc = �jqj, all other coe�cients [aijj] , [b

i
jjj]

can be determined.
A similar technique can be employed to determine

coe�cients with two or three inequal lower indices, e.g.,
[ai12],[b

i
112], [b

i
122] or [bi123]. Note that coe�cients of

the latter type appear only if the number of retained
eigenvectors L in (11) is greater than or equal to 3. De-
termination of coe�cients [ai12],[b

i
112] and [bi122] will be

considered as an example. Prescribe the displacement
�eld to the model in the following form

Xc = �1q1 + �2q2

then the calculated (using NASTRAN) corresponding
modal force vector ~Fc is represented as follows

~Fc = �TFc = �T�(�1q1 + �2q2) =
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[ai11]q1q1 + [bi111]q1q1q1 + [ai22]q2q2 + [bi222]q2q2q2+

[ai12]q1q2 + [bi112]q1q1q2 + [bi122]q2q2q1 (18)

Prescribing the opposite sign displacement �eld

Xc = ��1q1 � �2q2

one obtains a second set of equations

~F�c = �TF�c = �T�(��1q1 � �2q2) =

[ai11]q1q1 � [bi111]q1q1q1 + [ai22]q2q2 � [bi222]q2q2q2+

[ai12]q1q2 � [bi112]q1q1q2 � [bi122]q2q2q1 (19)

Summing (18) and (19), one obtains

~Fc + ~F�c = 2[ai11]q1q1 + 2[ai22]q2q2 + 2[ai12]q1q2

From this equation, the coe�cients [ai12] are deter-
mined (note that the coe�cients [ai11], [a

i
22] were al-

ready determined above).
Now we have two sets of L equations (18) and (19),

but to determine cubic coe�cients [bi112] and [b
i
122] from

them is not possible since the system matrix has lin-
early dependent rows. Therefore, an additional type of
displacement �eld is required. One can prescribe the
following type

Xa = �1q1 � �2q2

Then the modal force vector is equal to

~Fa = �TFa = �T�(�1q1 � �2q2) =

[ai11]q1q1 + [bi111]q1q1q1 + [ai22]q2q2 � [bi222]q2q2q2�

[ai12]q1q2 � [bi112]q1q1q2 + [bi122]q2q2q1 (20)

From the system of 2�L linear equations (18) and (20),
the coe�cients [bi112] and [bi122] can be determined. In
a similar manner, all coe�cients of the type [bijjk] and

[bikkj] can be determined. A technique has been devel-

oped to determine all the coe�cients [aijk], [b
i
jkl] using

a similar approach as above.

Solution of modal equations

Having the modal equations of motion (12) formu-
lated, solution to these equations can now be under-
taken through a variety of techniques. For the case
of random loading, the application of the equivalent
stochastic linearization was implemented in this study.
Within the framework of the force-based technique, the
equivalent sti�ness matrix (according to the formula
(3)) will have the following form

Ke = E[
@(
1; 
2; :::; 
L)

@(q1; q2; :::; qL)
] (21)

Note that the derivatives and expectations in (21) can
be easily evaluated due to the analytical representation

of the nonlinear terms in (13). A program producing
the calculations described above has been developed
and numerical results will be demonstrated in the next
section.
Based upon the expressions derived in equation (13),

one can proceed with the determination of potential
energy U in terms of modal coordinates. It is known
that elastic force terms (linear + nonlinear) satisfy the
following

kiqi + 
i(q1; q2; :::; qL) =
@U

@qi
i = 1; L (22)

Since all nonlinear coe�cients in 
i(q1; q2; :::; qL)
have been determined, the potential energy function
U (q1; q2; :::; qL) can be derived and it can be used in the
energy-based stochastic linearization technique. An
implementation of the energy-based version for appli-
cation to MDOF systems is considered as future work.

Numerical Results for MDOF Structures

It is important to note that the analysis of a vi-
brating structure in the nonlinear setting is necessary
only if the comparison of two static solutions (linear
and nonlinear ones for the highest deformation level)
shows a noticeable di�erence in the displacement �elds.
To illustrate this, one can consider the three beam
structures shown in Fig.5a-c. It was found that for
a cantilevered beam model (Fig. 5c), the di�erence in
terms of static 
exural displacements is negligible. Two
curves (Fig.6) corresponding to the linear and nonlin-
ear models are indistinguishable, where the 
exural dis-
placement of the tip node versus the applied static base
acceleration (inertial loading) is plotted. However for a
beam in Fig. 5b and clamped-clamped beam (Fig.5a)
the di�erence in displacements is quite noticeable (see
Fig. 6,7), indicating that the vibration analysis should
be conducted in the nonlinear setting.
The numerical results presented in this section cor-

respond to models of the structures in Figures 5a and
b. The results obtained with the SEMELRR DMAP7

are compared with the new method which employs
the technique described above, i.e. the determination
of nonlinear sti�ness coe�cients plus the conventional
(force-based) stochastic linearization technique.
SEMELRR was implemented in MSC/NASTRAN

using equivalent linear modal degrees of freedom. This
requires an eigensolution at each iteration, but af-
fords the most simple and versatile procedure read-
ily adapted within the framework of the existing
MSC/NASTRAN solution sequences. The original im-
plementation was limited to spatially uniformmechani-
cal loads, but has since been generalized to include spa-
tial non-uniformity. The solution is also formulated to
include the e�ects of static de
ection due to mechani-
cal or thermal loads, material nonlinearity and follower
forces. Some work has been done to validate the pre-
diction capability of SEMELRR, see Robinson et al.7,
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material Young's Poisson's density
modulus ratio

aluminum 0.73e+11 0.325 0.2763e+04
length length width thickness
beam a) beam b)
0.4572 0.2286 0.0254 0.002261

Table 1: Parameters of beams a) and b)

b1111 b1222 b1112 b1122
0.899e+12 0.977e+13 0.191e+13 0.139e+14

b2111 b2222 b2112 b2122
0.638e+12 0.608e+14 0.139e+14 0.293e+14

Table 2: Nonlinear sti�ness coe�cients for beam a)

but rigorous validation of all of its features and bounds
of its applicability have not been fully established.
The parameters of the models in Fig.5a and b are

shown in Table 1 (system of units is SI, [m], [N=m2],
[kg] etc.), where width and thickness are dimensions of
the cross-section of the beams. The �rst two natural
frequencies (associated with 
exural modes in the ex-
citation plane) for the beam in Fig.5a are 57.4 Hz and
310.1 Hz and the �rst two natural frequencies for the
beam in Fig.5b are 35.6 Hz and 220 Hz. In all cases
the �rst two (symmetric for clamped-clamped beam)

exural mass-normalizedmodes were chosen to approx-
imate the motion of beams according to formula (11).
The nonlinear sti�ness coe�cients determined with

application of the procedure described above are sum-
marized in Tables 2 and 3. The quadratic terms were
negligible, so only the 3rd order terms are shown. Since
the modal coordinates q1; q2 are nondimensional, the
units of these nonlinear coe�cients are in [N �m].
Note that from (22) would follow that

@
j
@qk

=
@
k
@qj

=
@2U

@qkqj

and comparing the terms with like powers in qj and
qk leads to a certain relation between the nonlinear
coe�cients, for example, for the cubic coe�cients b1122
and b2112 it is

b1122 = b2112

and for other types, it is

3b1222 = b2122 3b2111 = b1112

It turned out that the computed nonlinear sti�ness co-
e�cients (see Tables 2 and 3) are in an excellent agree-
ment with these relations.
The results in terms of the RMS displacement of the

middle and tip nodes (Fig. 5a and b) are shown in

b1111 b1222 b1112 b1122
0.359e+13 -0.713e+14 -0.233e+14 0.722e+14

b2111 b2222 b2112 b2122
-0.779e+13 0.247e+15 0.722e+14 -0.213e+15

Table 3: Nonlinear sti�ness coe�cients for beam b)

Fig. 8 and 9. A vertical base white noise excitation
(acceleration ab) provided inertial loading which was
spread over a 20{320 Hz range. One can see that nu-
merical results produced with the SEMELRR code and
the new method di�er by about 20 % for the case of
clamped-clamped beam. The di�erence is about 30 %
for beam b). In each case, the SEMELRR's RMS dis-
placements are less than the RMS displacements from
the new approach.
Unfortunately, there are no exact solutions available

for these structures, so comparisons are not possible.
However, recent experimental measurements (not pre-
sented here) indicate that the new method predicts
RMS responses more in agreement with their physical
counterparts than the SEMELRR solution sequence.
This will be quanti�ed with further numerical and ex-
perimental work.

Summary

The energy-based version of stochastic linearization
technique has been extended to MDOF systems and
the numerical results have shown superior performance
of this technique in comparison with the conventional
linearization version.
A new method for determination of nonlinear sti�-

ness coe�cients has been suggested and applied to sev-
eral examples of beam-like structures. This method
has been incorporated into a program which cal-
culates a steady-state response of a MDOF struc-
ture to a Gaussian zero-mean excitation. E�orts are
presently underway to implement this capability into
MSC/NASTRAN through a DMAP Alter.
Some di�erence (about 20{30 % range) has been

found between the two independent results in terms
of prediction of nonlinear response. Further numerical
studies and experimental work will be devoted to this
problem.
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Figure 7: Displacement as a function of inertial load,
beam in Fig.5a
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Figure 8: RMS displacement for beam in Fig. 5a as a
function of inertial random loading
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Figure 9: RMS displacement for beam in Fig. 5b as a
function of inertial random loading
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